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SUMMARY

This report pertains to the development of the Surface-Integral and

Finite Element (SAFE) hybrid method for the analysis of short or physically
small cracks. A brief review of representative research papers on fracture5 mechanics of short cracks is provided.

The review is focused on the definitions commonly used in distinguishing

short cracks from long cracks and the differences that are observed during
fatigue crack propagation. The experimental data clearly defines a need to

understand the physics of the behavior of long and short cracks. Reasons

attributable to these differences are discussed.

The formulation of the SAFE method for fracture mechanics is outlined.
Results are provided for long fatigue crack propagation predictions for
titanium specimens. The development of the SAFE method for nonhomogeneity and

plasticity is presented.

Research plans for modelling plasticity by use of shear bands at the

crack tip are also presented.

This annual report covers the period between August 1, 1986 to August 1,

1987. The work reported herein was under sponsorship of the AFOSR under the

technical direction of Dr. G. Haritos.
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3 1.0 INTRODUCTION

Structural components are made from materials which have undergone a

variety of manufacturing processes. Inherently, the materials contain flaws

such as inclusions, voids, porosities, microcracks etc. (refer to Fig. 1,

Ref. 1). The presence of a flaw thus has to be accounted for in the design of

structural components. These flaws can grow, especially under fatigue

loading, and it is important from a damage tolerance point of view to be able3 to predict the evolution of these flaws.

Fracture mechanics has been developed and applied successfully for the

analysis of cracks and associated crack propagation. The Griffith-Irwin

linear elastic fracture mechanics (LEFM) theory has been adequate for

modelling cracks in structural components where the elastic K fields dominate

the solution (Ref. 2). The dominance is usually appropriate when the size of

the plastic zone (refer to Fig. 2) is small compared to the length of the

crack and other dimensions of the body.

The development of LEFM has been followed by the development of elastic-

plastic fracture mechanics (EPFM) with the pioneering work of Hult and

McClintock (Ref. 3), Rice (Ref. 4) and Hutchinson (Ref. 5). EPFM is

applicable and needed especially for high toughness and low strength materials

wherein the elastic K dominance is not satisfied and has to be replaced by J

dominance, J being Rice's path independent integral representing the energy

release rate. The development of J and associated integrals such as the

Wilson-Yu modified J integral (Ref. 6) which account for thermal strains are

however based on the deformation theory of plasticity or non-linear elasticity;

thus J cannot be applied rigorously after unloading as the crack grows.

The interest in fatigue propagation of short cracks has been motivated by

the experimental studies (Ref. 7) which have shown that the growth rate of

short fatigue cracks is greater under the same nominal crack driving force

than the growth rate for long cracks. It is thus very important to be able to

predict growth of these short cracks, as application of long crack fatigue

growth analysis will not be applicable and failures may not be predicted.

In this report, a brief description is given for the Surface-Integral and

Finite Element (SAFE) hybrid method that has been developed for effective
~modeling of crack propagation in structural components. Some representative

results for long cracks are provided. The development for plasticity along

with results is presented.

The motivation for developing lumped plasticity models using shear bands %"
at the crack tip is discussed. The development of the elastic-plastic

capability of SAFE is aimed at modelling short (and long) cracks and deter-

mining the effect of the plastic zone on crack closure.
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2.0 BRIEF REVIEW OF THE LITERATURE

An excellent review of the experimental and analytical work performed on

propagation of short fatigue cracks has been provided in the paper by Suresh

and Ritchie (Ref. 7). The fatigue process itself is comprised of formation of .

microcracks due to cyclic damage, coalescence of these microcracks into
macrocracks, the subcritical growth of these cracks and subsequent failure of

the structural component. The initiation of a crack is a matter of definition

as flaws are always present in materials. Initiation in an engineering sense

is usually related to the size of the crack which can be readily detected

under low magnification. The number of cycles, NJ, to initiation of this

crack in an engineering sense has been used to define "life" of a structural

component. However, this can be a conservative approach and the "damage

tolerance" concept reduces this conservatism by allowing for number of cycles 6
Np for subcritical crack growth along with appropriate inspection intervals

(refer to Fig. 3). The total fatigue life NT is given by

NT = NJ + Np (1)

NI is obtained empirically while Np is obtained either in a test or by

analysis. For design purposes, Np is usually obtained by an analysis which
has been well calibrated with actual specimen data. Np is obtained by using

a LEFM approach and the Paris' equation, given below or a suitable variation

such as the Forman, Wheeler, Willenborg (Refs. 2, 7) models.

da C(AK)m (2)

where,

a - crack length

N - number of cycles
AK - the stress intensity factor range

C,m - material constants.

2.1 DEFINITIONS OF VARIOUS TYPES OF SHORT CRACKS ,.'k

Short cracks have been defined in a number of ways. The definitions

given below are from reference 7.

(1) Cracks which are of a length comparable to the size of the

microstructure, e.g., of the order of the grain size, .

2.



Ir
(2) Cracks which are of a length comparable to the scale of local

plasticity, typically < 10-2 mm in ultrahigh strength materials and

< 0.1-1 mm in low strength materials,
I-

(3) Cracks which are physically small < 0.5-1 mm.

In this research effort, the second and third definitions will be used

for defining short cracks. Also since a two dimensional analysis is being
utilized, the crack can be long in the thickness direction. For the first
type of crack, anisotropy of the grain will be important; for the ones defined
by (2) and (3) EPFM will be necessary for analysis as the elastic K fields may
not dominate at the crack tip.

2.2 DIFFERENCES IN OBSERVED RESULTS FOR LONG AND SHORT CRACKS

The experimental work performed by various researchers (Refs. 7-9) has
shown that small cracks grow faster than long cracks and application of the
Paris equation (2) for the same AK gives incorrect results and can lead to

overestimates of life (refer to Fig. 4). As can be seen in the figure, the
threshold stress intensity factor is different for short cracks than long
cracks; also the short crack may arrest or behave as a long crack after it
has grown sufficiently.

3.
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3.0 SURFACK-INTEGRAL AND FINITE ELE ENT (SAFE) HYBRID
fMETHOD FOR FRACTURE MECHANICS

The Surface-Integral and Finite Element Hybrid method is a very effective

method that has been developed for modelling evolution of fractures in finite

continua. It combines the best features of the Surface-Integral method which

uses dislocations (displacement discontinuities) to model the fracture; and

the finite element method for modelling the uncracked body and any

inhomogeneity and volume effects. A thesis (Ref. 10) and several papers have

been written on this subject (Refs. 11-15).

3.1 FORMULATION OF THE SAFE METHOD FOR LINEAR ANALYSIS

The details of development of the SAFE method are given in references 11-I 12. The governing equations given below are derived using linear super-

position of the Surface-Integral and Finite Element models (Fig. 5) ensuring

appropriate traction and displacement matching at the boundaries.

-K u . R(3)

where, E(
K Stiffness matrix of the plate without the crack

C Coefficient matrix for the singular integral equation formulation

G Boundary force correction matrix

S -Stress feedback matrix IN

L Displacement matrix for the singular integral equation formulation

U -Total displacement vector at finite element nodes

F - Amplitude of the dislocation density.

R - Applied nodal force vector

T - Applied traction vector along the crack

In Fig. 5, Rc is the boundary force

Rc -[G]{F} (4)

and Tc is the traction along the crack line

TC "S]rUE (5)T,1jjU

4



3The governing equations for the FE and SI models are:
[K]{UFE} = R - Rc (6)

l and [C]{FI - T - Tc 
(7)

3 Also the total displacement field is given by,

U = UFE + USI (8)

where,

UFE . Finite element displacements for the plate without the crack

USI = Surface integral displacements for a crack in an infinite domain

US = [L]{F} (9)

using Eqs. (4) through (9) results in the coupled governing Eq. (3) for the

SAFE hybrid method.

Results for a wide range of representative problems are given in

references 10-15. A typical result for mixed mode fatigue propagation of a
long crack in a titanium specimen is given in Fig. 6.

3.2 FORMULATION FOR MATERIALLY NONLINEAR ANALYSIS

The formulation of the SAFE method for material nonhomogeneity is first

considered to motivate the development for nonlinear analysis.

3.2.1 Formulation for Nonhomogeneity

In the development of Eq. (3) the material considered was isotropic and
homogeneous. Nonhomogeneity in the uncracked body can be easily represented
by using appropriate material properties for the finite elements. In the

surface-integral model the nonhomogeneity cannot be directly included.
However, similar to the boundary force correction vector Rc, a volume

correction factor Rc nh can be calculated and applied to the finite element
mesh. Thus the modified governing equations for nonhomogeneity are given by

FK G(KK)] UR (10)
S C-SL F T

5
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The additional K term appearing in Eq. (10) is obtained from

[K]{uF} = R - Rc - Rcnh (11)

where,

Rcnh - Additional correction to the load vector due to the presence of

nonhomogene it y

R cnh . [K]j{F} (12)

Rcnh=I f B(~~
V (m) B BA 1) {aAdI(3

l = Nonhomogeneity correcton matrix

DADB= Constitutive matrices, subscript A and B correspond to the

material used for the influence function and the nonhomogeneity

7ASI = Stresses at the finite element Gauss points due to the surface

integral model for homogeneous media.

The summation sign in Eq. (13) extends over all the finite elements.

This method has been applied to a problem of a crack in a bi-material plate

and good agreement with analytical solutions has been obtained (Refs. 10, 14).

3.2.2 Formulation for Material Nonlinearity

The equations developed for modelling nonhomogeneity are utilized to form

the governing equations given below for plasticity via incremental super-

position of the surface-integral and finite element models and using

equilibrium iteration. ,-.
1.OC t+AtR t+A&t^(i-1)

S. AFI ttT - t+ti-)(4

6'
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where

K - Initial stiffness matrix at time t = 0

G = Initial boundary force matrix at time t = 0 (G = G- 0 KL)

OS = Initial stress feedback matrix at time t = 0.

C = Initial coefficient matrix at time t = 0 (C = C-SL)

AUi  = Incremental total displacement vector at iteration i

AFi Incremental dislocation density amplitude vector at iterationi

t+AtR = Applied nodal force vector at time t+At

t+,&t (i-l)= Internal nodal force vector corresponding to the (total)

Cauchy stresses at the Gauss points at iteration i-I

t+AtT = Applied traction vector along the crack at time t+At

t+At(i-l) Internal traction vector corresponding to the (total) Cauchy

stresses at the Gauss points at iteration i-1.

The internal nodal force vector and traction vector are calculated as

follows (for both elasticity and plasticity): .%.

t+At(i-1) B TFE (i-l)dV + (OG + t t~i-) t KtF(i-1) (16)

V

and,

t+Ati-I Nonhomogeneity correction matrix (for plasticity) at time

t+At for iteration (i-i).

t+at^(i-1). t+ tT (i-l) + ct+AtF(i-) (17) 'ii
~where,

t+At ( i-I )
FE = Cauchy stresses (due to only the finite element continuous -

'stress field) at time t+At for iteration (i-I).

8t =1 ( i-I )

FE = Smoothed tractions (only continuous stress field) at the

collocation points (obtained from Gauss point stresses) at

time t+At for iteration (i-I). 
•

,e
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Analysis of a center cracked panel (Fig. 7) for a bi-linear elastic

plastic material model has been performed. Results obtained for long cracks

by the SAFE method are compared with Hutchinson's (Ref. 5) asymptotic results

and reasonable agreement has been obtained (Table 1). The formulation given

by Eq. (14) is being further enhanced and convergence issues are being worked

out. Z

At present the model as shown in Fig. 7 still needs use of a large number

of finite elements for modelling plasticity. To retain all the best features

of the SAFE method it is desirable to capture the plasticity at the crack tip

by special schemes. One way of modelling plasticity at the crack tip is by

means of shear bands at the crack tips. This is discussed in the following

section.

3.3 MODELLING PLASTICITY AT THE CRACK TIP BY USE OF SHEAR BANDS

There are various models such as the Dugdale model (for mode I) and the U
Bilby-Cottrell-Swinden model (for modes II and III) which have been used to

model plastic yielding at the crack tip (Ref. 2). The Dugdale model uses an

additional crack length with a yield stress ay acting on it to represent the

deviation from the elastic singular behavior. Similarly the Bilby-Cottrell- %

Swinden model uses a distribution of dislocations to model the slip in the

additional crack length, for modes II and II. For a crack loaded in uniform

tension, for example, it has been reported by Vitek (Ref. 16) and other

researchers (Refs. 17-19) that the yielding can be modelled by inclined slip-.

planes at the crack tip. This is like a 'lumped' plasticity model that uses

dislocation theory and is suitable for the SAFE method. These models are

being studied and current research is aimed at incorporating these in the SAFE

code. Particularly for short cracks it is felt that these 'lumped' models

will be advantageous. 0

3.4 FUTURE RESEARCH OBJECTIVES -

The current objective is to develop the inclined slip-plane model for 0

plasticity, proceed with modelling cracks emanating from a notch and then

develop and implement algorithms for elastic-plastic crack propagation.

80 .. .'
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I Table 1. Elastic and Plastic Stress Intensity Factors

E E T Yield K Iel* K IPl* K IH** K IPl

(psi) (psi) (psi) cyV'fla a/ira a/ira KI

0.3 x 108 0.15 x 108 3500 1.206 0.85 0.884 0.96

0.3 x 108 0.1 x 108 3500 1.206 0.652 0.735 0.89

30.3 x 108 0.3 X 107 3500 1.215 0.387 0.416 0.93

0.3 x 108 0.1 x 107 3500 1.198 0.208 0.238 0.87

*SAFE analysis

*Based on Hutchinson's hi-linear results.
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LONG CRACK
V (LEFM)

0_SHORT CAK

ILONG CRACK THRESHOLD AK 0

log &1K-

Figure 4. Typical fatigue crack propagation rates (da/dN) for long and short
cracks as function of stress Intensity factor range A [Ref. 7]. :4
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Figure 6. Fatigue propagation of a long crack In titanium.
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